
Welcome to my second year course on Digital Electronics. You will find that the
slides are supported by notes embedded with the Powerpoint presentations. All my
teaching materials are also available on the course webpage:
www.ee.ic.ac.uk/pcheung/teaching/ee2_digital/. The QR code here provides a
shortcut to the course webpage. I will be updating the notes, the laboratory
instructions and tutorial problem sheets each week after the lectures. All my
lectures will be recorded with Panopto. The recordings will also be upload as soon
as possible after the lectures.

The course consists of about 16 hours lectures interleaved with 6 problem solving
classes. These will be held on Monday 3pm to 4pm and Tuesday 4pm to 6pm
starting from 8th of October 2019.

This course follows on from the first year Digital Electronics I course. Unlike the first
year course where all gates and flip-flops are assumed to exhibit ideal behaviour,
this course will teach you about real-life digital circuits.

Digital circuits are ubiquitous. For example, there are more electronic modules in
petrol or diesel cars these days than mechanical systems, let alone electric cars! A
mobile phone has many times more transistors than human alive on earth, and most
of these transistor are digital, i.e. working as on-off switches. Therefore this second
year digital electronics course is fundamental to any EEE or EIE education.

1

It is important for you to know at this stage what you are expected to learn (i.e. the learning
outcomes) from this module. Learning outcomes specify WHAT you should be able to do as
a result of taking this module. Let me go through the listed outcomes in some details:
1. Understand synchronous digital systems – if you are given a circuit with gates and flip-
flops, you should be able to predict how it behaves. For example, you should be able to
draw the timing diagrams for output signals given the input stimuli, or write down the
sequence of states that the circuit must go through.
2. Design circuits to meet specification In real circuits, outputs response to changes in inputs
after some delay. In order for a digital circuit to work as intended, such delay must be taken
into account, and you as a design engineer must be sure that there are no timing violations
(i.e. circuit delays causing the circuit to fail).
3. A/D and D/A conversions – the physical world is generally analogue in nature and is not
just ‘1’s and ‘0’s. However, electronic systems are mostly digital. Analogue to Digital (ADC)
and Digital to Analogue (DAC) conversion provides the link between the analogue physical
world to the digital electronics world. You need to understand HOW analogue signals are
converted to digital, and how to interpret the datasheet of such components.
4. Finite State Machines – Designing digital circuits involve understanding of various fields,
and one of the field of study is known as Finite State Machine (FSM). This is a systematic
ways of thinking how a digital system goes through different states, and as a result, control
the operation of a digital sub-system.
5. Field Programmable Gate Arrays – FPGAs is one of the primary technology for
implementing digital circuits nowadays. This has replaced most of the implementations in
“discrete logic” (such as 16-pin packaged TTL or CMOS gates). It has also replaced many
Application Specific Integrated Circuits (ASICs) that the industry used to design. FPGAs prove
to be much lower-risk and must easier to design as compared to other approaches.
Therefore this course will be based around the use of FPGAs. (to continue …..)

2

6. Verilog HDL – While you mostly use schematic diagrams to describe your digital
designs in your first year, you will ABANDON this in favour of a computer
language to specify and design your digital circuits. You may find this odd initially
because diagrams are generally more intuitive than a computer language.
However, using a Hardware Description Language (HDL as it is called), and in our
case, using Verilog, is the way that most modern digital systems are specified and
designed. No matter whether you like programming or not, as a electronic
engineer, you will have no choice but to learn such a language.

This course will be assessed through an examination paper in June 2020. There will also
be an associated E2 Laboratory Experiment – VERI.

The Laboratory Experiment is EXTREMELY IMPORTANT in helping you to learn this
subject. It is intended to teach you how to design digital circuits using Verilog HDL
targeting implementations on FPGAs. The Lab sessions will run for FOUR weeks starting
on the 11th of November, and assessment for this experiment will take place in the last
week of term (starting 9th of December). You may also borrow the experiment board
(DE1-SOC) to use at home and at your leisure, one week at a time. There will be around
one such board for every four students to share.

There are three recommended textbook “Fundamental of Digital Logic with Verilog
Design 3/e” by Stephen Brown and Zvonko Vranesic. Unfortunately this book is in short
supply and is extremely expensive to buy new. You may be able to pick up a second
hand copy on the internet. Another possible book but less relevant is by Dally and
Harting. While it is NOT necessary to own a textbook for my course because I do not
follow a particular textbook in my lectures or in the lab, I would recommend you to get
hold of a second hand copy or an eBook in digital as a reference. The third book, also
not compulsory, is “Digital Design (Verilog)” and is very Verilog specific. It is a good book
if you want to learn Verilog well. Again it is not compulsory.

3

The practical aspects of this course module is based around a FPGA board, the DE1-
SoC. Here is an overall block diagram of the board. Don’t worry about the details
for now. I will be explaining to you the various bits on the board later when you are
about to start the VERI experiment in the Lab in mid-November.

There should one DE1 board for every four students to borrow and use at home.
The basic lending duration is one week. You can renew your borrowing period
beyond one week if there are free ones in the Stores.

To borrow a board, bring your ID Card to Level 1 store, and you can check out a
board to take away. But you must return it at the end of the loan period.
This board has everything you need to do the experiment and MORE. It consists of a
Cyclone V FPGA (which I will explain in more details in a later lecture). It has various
input and output devices. This is a very powerful board and it contains lots of
additional hardware resources that go beyond the scope of this module and the
experiment. You are encouraged to explore it, particularly if you are an EIE student.

4

This is the current lecture plan for the course. Details may change as we progress
through the term. There will be around 16 lectures (slightly higher than the
nominal 15 lecture per module in the second year).

I will cover a number of topics that form the basic course in digital electronics. By
the end of the course, you should be able to independently design digital circuits
using FPGAs. There will also be a couple of lectures on how to interface digital
systems with the analogue system via D-to-A and A-to-D converters.

I will be linking my lectures to the Lab Experiment wherever possible. To do well on
this course, you really need to take the Lab seriously!

5

This lecture is just partly a revision lecture, and I also want to introduce you to
alternative notations used both in the notes and in some textbooks. This follows the
IEEE standard for digital schematics.

Instead of using curves for gates, one could use rectangular blocks and a symbol to
denote the logic function. Inversion could be on the input or output terminal.
Instead of a circle, we could use a small triangle as shown here.

IEEE publishes the standards, and there is an excellent tutorial on this digital circuit
notations published by Texas Instrument (see the course webpage). You don’t really
need to spend much effort on this – just need to learn the basics so that you can
understand the meaning of the symbols and the labels used for signals.

6

In the first year, you learned about the different ways of describing or specifying a
digital circuit.

1. Schematic diagrams with gates – this method is the first thing you learned and it
is easy to understand. However, as will be seen in Lecture 3, this is not necessarily
the best way to specify a large digital system.

2. Boolean equations – this provides a formal way to express logical relationships
between Boolean variables. Useful when designing on paper, but less useful in
practice. In particular, we rarely use Boolean algebra to perform logic simplification
in real-life!

3. Truth Tables – this is a universal way to describe the behaviour of a circuit and we
continue to use this in datasheets or even in actual designs.

4. Timing diagrams – this is a useful way to explain behaviour of sequential circuits
and is used in datasheets. However, not that useful as a method to specify a circuit
in a CAD system.

5. Hardware Description Languages (HDLs) – this is a new method you learn this
year (except EIE students who have already encountered this in their group project).
This is what we will be using to specify and design digital hardware from now on. For
this course, we will be using Verilog HDL, which is one that is very closed to the C
language. It is also used extensively for designing integrated circuits such as ASICs
and other type of chips. Another popular HDL is VHDL. I personally find VHDL too
wordy (verbose). Finally, there are now emerging higher level languages such as
OpenCL, which is attempting to make hardware design more like programming a
computer. This topic is left to later years.

7

You have also learned about the various building blocks for digital electronics.
1. Primitive gates – We have the basic AND, OR, NAND, NOR, XOR and XNOR gates.
2. Multiplexers MUXs – These are really useful component. Shown here is a 2-to-1 MUX
with two data inputs and one select input. The output is one or the other depending on
the select input (sel). We often put a number of these together to provide multiplexing
function to a mult-bit data word (as shown here with two 3-bit numbers).
3. Arithmetic circuits – Commonly found are adders and multipliers. Subtractor can be
built from an adder if we use 2’s complement representation of signed integers.
4. Encoders/Decoders – These two are related. Encoding is a logic module that reduces
(encodes) a large number of bits and produces fewer output bits. Decoders are the
opposite. Shown here is a 7-segment display decoder, where 4 input bits are decoded into
7 logic signals to drive the seven segments of the display. The encoder here is known as a
priority encoder. It produces a 3-bit output showing where the first ‘1’ is encounters from
the most-significant bit D7 to the least significant bit D0.
5. Flipflops and Registers – These are the building blocks for all sequential circuits. As will
be seen later, we really only use one type of flipflop – the D-FF.
These are all important components that all digital circuit designers need to be familiar
with. However, nowadays, we rarely design large digital systems at such low levels.
Instead we generally try to express these building blocks in a more abstract manner in a
hardware description language (as we will see in later lectures).
In addition to these basic blocks, we also have memory devices and microprocessors.
These are topics that we will cover towards the end of this module.

8

All digital circuits exhibit propagation delay. Here it shows the delay table for a
“discrete logic” CMOS NAND gate. The delay could be in the region of nanoseconds.
However, with the FPGA chips we use for this module, the internal “gate”
propagation delay is approximately 100ps, which is much faster than discrete logic.
As can be seen later, the “gate” inside the FPGA is also much more complex than a
simple NAND gate.

Also note that propagation delay depends on the “cause” (input rising or falling, and
on the slope of the edge) and the “effect” (output rising or falling). Delay also
depends on what are connected to the output (i.e. the loading). As can be seen in
the example here, the rising edge A to falling edge X delay is lower than that of A
falling to X rising.

Note that I use an arrow to indicate the cause (the blunt end) and the effect (the
pointed end) in a timing diagram.

9

You learned about various types of flipflops (FFs) in the first year. In fact, all you
need is the D-FF. With a D-FF, you can construct circuits to behave like various types
of flipflops: Toggle (T-FF), set-reset (SR-FF) or a JK-FF.

Therefore in this course, we will ONLY use D-FF for everything. This is in fact what
happens in practical designs.

We use the IEEE standards for the symbol here. C mean clock input, the number 1 is
a numerical label (as clock 1). D is for data input, and 1D means this input is
controlled by input 1. Q is the flipflop output.

10

Timing and delay parameters for flipflop is different from that with gates. Shown
here is a D-FF that responses to a rising edge on the clock signal. A D-FF is like a
camera, taking a “picture” from the scene (input is D). The clock input C1 is like the
trigger on the camera – when pressed it samples the input and take a picture. The
“cause” here is the rising edge of the CLOCK and the “effect” is the Q output
sampling the D input, and keep the value until the next rising edge of the clock.

The delay here is from CLOCK rising edge to Q output changing. However, for the D-
FF to work properly, there are two other timing parameters which are important:
the setup time and the hold time. I will be talking about these in a later lecture.

11

Here is an example of a D-FF used in a ripple counter.

Q0 value is first inverted (represented by the triangle) and then used as D input on
the next clock cycle. The flipflop is triggered on the FALLING edge of CLOCK.
Therefore the Q output “TOGGLES” on each active edge of the clock (i.e. falling
edge). Q0 is therefore changing at half the rate of CLOCK, hence this flipflop acts as
a divide-by-2 circuit.

The Q0 signal is now used as clock input to the next D-FF. Hence Q1 is toggling at
half the frequency of Q0. The circuit is effectively a binary counter.

This is a simple finite state machine (FSM) because it has 8 states which cycles
through in a sequence. FSM will be covered in some later lectures in details and it is
a very important topic in digital designs.

We then use the Q0 output as the clock input the next stage etc. Note that
because the 2nd stage only starts to work once the first stage is completed, the
propagation of effects “ripples” through the circuit – hence we call this a “ripple
counter”.

This counter is also known as an asynchronous sequential circuit. It is
“asynchronous” because the output signals are NOT synchronised to a single clock
signal (since there are many clock signals), and “sequential” because its current
output value (or state) depends on previous output values in the sequence.

12

The ripple counter is potentially slow. The delay between the active edge of the
clock and the counter output giving the correct value is dependent on the number of
flipflops in the circuit and therefore the size of the counter (i.e. how many stages) .

A far better approach is to use the flipflops TOGETHER as a group, and clock them
using THE SAME CLOCK signal as shown here. The Logic Block is a combinatorial
circuit which computes the next D value D2:0 from the current Q value Q2:0. (D has
three bits D0, D1 and D2. We use the notation D2:0 to represent this.) The
relationship between D and Q is simple: D2:0 = Q2:0 + 1.

Since the three output bits Q2:0 change within a fraction of a nanosecond of each
other, this circuit is: 1) faster than the ripple counter; 2) the “delay” is constant
instead of dependent on the size of the counter.

This circuit is known as a synchronous sequential circuit because its function is
synchronous to a single clock signal. If you regard the Q2:0 output value as a state
value, it follows a finite number of states in a defined sequence. Therefore it is also
a form of Finite State Machine.

Note the notation with the arrows.

13

